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Consider the two-dimensional wave equation:
O —Au = f(x,y,t) if t >0, u(x,y,0)=dulx,y,0)=0
And heat equation
diu—Au = f(x,y,t)if t>0; u(x,y,0)
Where the forcing function f is given by
f(x,y,t) = cos2t exp[—(2x? + 3y?) /4]

1. Solve the wave equation in the whole plane, withu —» 0 as x? + y? — oo, using the
Green’s function.

2. Solve the wave equation in the domainQ: —1<x<1,-1<y<1, withu=20
at 0Q using a spectral representation.

3. For both the unbounded and bounded domain:

3.1 Elucidate whether the solutions are in phase with the forcing.

3.2 Compare the CPU time that is required to construct a snapshot of the
solution calculated in questions 1 and 2 in the domain Q in a 100 x 100
equispaced grid att = m/2.

3.3 Construct the appropriate graphical representations of the solution
calculated in questions 1 and 2 to illustrate the solution in the domain Q as
time proceeds.

4. Repeat questions 2, 3, 3.1 and 3.3 for the damped wave equation

Ot + €0,u — Au = f(x,y,t) if t >0, u(x,y,0)=0d;u(x,y,0)=0
with e = 0.01
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1. Mathematical Analysis
1.1 Wave equation, using Green’s function
The 2D wave equation with a forcing is given by:
0w — Au = f(x,y,t)

d’g ~0°g 0d%g [1- 1]

For simplification, from this point x — ¢ will be called x; y —n will be called y and t — t will
be called t. The condition at an initial time,

g
Ilt=0 = Eh:o =0

And the convergence condition at infinity:

dg dg
Iy = Gy Nimaymoe = gy a7y = 0

Whit two space variable and one time variable, a triple integral transform is applied to the
differential equation [1- 1]. The Laplace transform with respect to the time variable:

o]

g°(s) = f g(Destdt
0

And the double Fourier transforms with respect to the space variables:

o0 ' 1 o |
g = f_ g(x)e“fxdx; gx) = ZJ—_ g_(sf)e“f"df

o] o]

) 1 ;
g = [ gwedy; g0 =5 [ gamemray

Applying this triple integral transform with the initial and boundary conditions, the wave
equation is transformed to the simple algebraic equation for the unknown function g*:

g —n*g =s*g -1
=x 1 [1- 2]

g =¢>2+n2+52
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For the inversion, three inversion integrals must be carried out successively. The first is
the Fourier inversion integral with respect ton. Then the system is reduced to a semi-
infinite integral:

g—* :ifoo ;e—ﬂ?ydn N g—* :lmedn
2m )_o, €2 +n? + 52 mlo 12 + [T + 52

This can be evaluated using:

© T
J;) mcos(xy) dx = %exp(—alyl)

Then the first Fourier inversion integral yields:

G = ————exp [~y +57)

_2 &2 + 52

Secondly, the inversion integral with respect to ¢:

1 = 1 .
g =5 f ———exp {—|yVE§Z +s2fe%dg
2T 0 EZ + SZ { }
Where the next integration formula can be applied:

Jw\/%exp (—\/xz + a2) cos(bx) dx = K, (a\/b2 + cz)
0 X a

Where K,, is the zeroth order modified Bessel function of the second kind. Applying this
tog*

1
o 2 2
g = ZnKO (sw/x +y )
For last, the Fourier inversion is made:

1

6= 171 ()

21

For which the following inversion formula can be applied:

0 t<a
L_l[KO(aS)] — M - { 1 }

t2 — a2 —2_ > t>a
t a

Where H, is the Heaviside’s unit step function. Applying this inversion formula to the
equation:
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_1H(t—r)_1{ 0 t<r}
C2miz—r2 2nW\t2—-r2 t>r

Where r = ,/x? + y?, consequently the expression for Green’s function of this equation is
expressed as:

1 H({-7)
C2mAJfZ — 12

Taking back the change of variable used at the beginning of this section, the Green
function is represented as:

1 H(E =D =)+ 67 D)
S e - =)+ 67— 1)

Thus, the solution of the wave equation in the whole plane:

t oo oo

1 [H((t—f)—\/(xz—fz)ﬂyz—nz))]
u_%of_[o )] L/(t—r)z—((x2—62)+(y2—nz))J.f(f’n’T)d€dn dr [1- 3]

Callingr = \/(xz —§&2) + (y? —n?), and fixing values for x and y, then the solution is non-
zero whent — 7 > r. Meaning that the wave caused by the forcing term applied at this
point (x, y) takes a time t to reach another point located at a distance r = t.

1.2 Wave equation in a bounded domain

To reduce the calculus needed to answer all the questions, question 4 is going to be
approached at first, and for section 2 and 3 the damping will be taken as 0 when needed.

Opu +e0iu—Au=f(x,y,t) if t >0, u(x,y,0)=0u(x,y,0)=0 [1- 4]

To solve the Duhamel’s principle will be applied. The Duhamel’s principle is a general
method for obtaining solutions to inhomogeneous equations by reducing using the method
of variation of parameters:

0+ e0,v—Av =0
v, ¥, t —17,7)|t=0 =0 at 0Q A Ov(x,y,t—1,7) = f(x,¥,7T)
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Where s =t — 1 and u - v. Using separation of variables:
v =X@Yy)S(T(7) [1- 3]
The system in equation [1- 4] becomes:
S"XYT+eS'XYT—-X"TYS—Y"XTS =0
Dividing by TXYS:

SII SI_XII Y”
ST T TY

Knowing that when you have a differential equation dependent of a variable equal to
another differential equation dependent on a different variable (or variables), these can
only be equal if they are equal to a constant. In this case the constant will be called —A2

SII SI XII YII
e =t — =22 [1- 6]

Solving for S:

S"+eS'"+2A25=0
This can be seen as s? + es + A2, and solved finding the roots

2

_—si\/sz—4/12 B £+ € 22
-~ s=—3 |(3) -

S

Knowing that € is small, then the solutions will be complex. For simplicity at the moment of
writing the system; i\/12 — (¢/2)?, will be called w. The solution of the ODE

S(s) = e(&/2)5[Asin(ws) + Bcos(ws)]
Which because of the initial conditions:
S(s) = e(=&/2)5 Asin(ws) [1- 7]
Then the right hand side of the equation [1- 6] is solved:

XII YII Az XII AZ YII
—_— —_—= = - — = — _—
X Y X Y

)
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As before, both sides will be equal to a constant (in this case called—u?):
XII YII
— =2 ——=—? 1-8
X 2 -8l
Solving in X:
X 2L x4 u2x =
i ue—- X" +uX=0
X = Csin(ux) + Dcos(ux)
As the domain is bounded to Q: —1 < x < 1:
x=1: 0= Csinu+ Dcosu
x =—1: 0 =—Csinu + Dcosu
mm
If C=0: 0=Dcosy =» cosuy=0—- pu= T;m: odd number
If D=0: 0=Csinu = sinu=0 - pu=mm; m: €N
mmx
X(x) = D,,cos (T) or/and X(x) = C,,sin(mmx) [1- 9]
Solving inY:
144 YII
T =S Bt =pt o = pt o VP =0
Y = Esin(py) + Fcos(py)
Using again the boundary condition Q: —1 < y < 1 where the system is bounded:
y=1: 0= Esinp + Fcosp
y=-—1: 0= —Esinp + Fcosp
nm
IfE=0:0=Fcosp » cosp=0- p= 7;n:oddnumber
If F=0: 0=Esinp - sinp=0 - p=nm n: €N
nry ,
Y = E,cos (T) or/and Y = E,sin(nny) [1- 10]

Now, as A2 + u? = p?; then there will be 4 possible combinations for A:

22 =p? + 2
22 nn+mn 2 mt_l_mn
= — [N — J— -
2 2 2 2

, NI nm
A =7+m7r - A= 7+mn
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Ay
2 mm mnm
A =nrr+7—>/1= TlT[+T

P=nr4+mn - A=+Vnmr+mnr

Substituting equations [1- 7],[1- 9],[1- 10], into [1- 5], the system v can be expressed as
follows:

v = Ae(“¢/2)Ssin(ws) [Csin(ux) + Dcos(ux)] [Esin(py) + Fcos(py) 1T (1)

At this point, in order to narrow down the possibilities; the 4 combinations need to be
analyzed. The most important think to be taken in to account is the symmetry related to the
cosine and sine functions; as in this system either sine or cosine relations can be taken for
the X and Y ode’s, the cosine relations are chosen due to its even symmetry with the O
because the system also has symmetry with respect to 0 at the boundary conditions; thus
the system can be represented as:

2m+1 2n+1
() mx ()
Z Z Apm sin(ws) e(“&/2)5 | cos — 5 ||eos\— 5 T(7)
n m

Applying the Duhamel boundary condition (d;v(x,y,t —t,7) = f(x,y,7)) ats = 0. Taking
into account that the derivative with respect to t is equivalent to the derivative with respect
tos:

Apm W cos(ws) e(_;)s cos| —=—"— ———||IT(®) = f(x,y,7)

(2m2+ 1) x ] lcos (2n2+ 1) Ty
2 2

Using separation of variables for f (x,y, 1) - £, (xX)f, ) f (1)

fe(®)

w
2n+1
>< f,, cos (Zzﬁ >

2n+1
>< cos? w >

wl'(t) = fr(r) » T() =

(2m2+ 1) x
2

< fy,cCOs

Apm =

< cos? (Zmz-; 1) i

Where f, will be associated to the exp(—x?/2) and the f, to the exp(—3y?/4).



2 Numerical evaluations

2.1 Solution in phase with the forcing term

In order to elucidate if the solution obtained through spectral representation is in phase or
not with the forcing term the system is analyzed at some fixed point. In all the
representation the red line is the forcing and the blue line is system reaction to this forcing:
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Wave equation without damping in bounded domain at the point x=0.4 y=0.2
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Figure 2-1 Phase without damping
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As can be seen in both, jError! No se encuentra el origen de la referencia. and jError!
No se encuentra el origen de la referencia. the phase between the forcing term and the
solution has some transition as time pass. As the system starts at rest the initial amplitude
is 0, when the forcing is applied to the system the amplitude begins to increase, at this
point the forcing term is ‘pulling’ the system (increasing the amplitude) to its maximum.
When the system reaches its maximum amplitude, it becomes in phase with the forcing
term. Now as the forcing has lower maximum amplitude than the system it starts to ‘pull’
the system (this time as a break) to its rest, losing the phase. Finally when the system
returns to rest, the process is repeated.

This effect happens because of the boundaries of the system; as the system is bounded
reflected waves are present and have an effect over the phase between the system and
the forcing and thus affecting the amplitude. The main difference between the damped and
undamped system is the fact that after each ‘cycle’ (from initial to transitional rest position)
the amplitude will be diminished in the damped system.

For the solution obtained through Green’s function two possibilities are analyzed; a ‘near’
and a ‘far’ point:

Wave equation in unbounded domain at the point x=0.4 y=0.2
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Figure 2-3 Green function, ‘near’ point

For the point near the wave has the characteristics shown in Figure 2-3 where at start, a
transition is present till the system reach its equilibrium. The forcing and the system are
almost in opposite phase. What's happening is that the forcing starts at a maximum and
generates a positive amplitude in the system, then the forcing decrease and when it reach
the zero the system approach its maximum amplitude, then the forcing starts being
negative (till its maximum -1) generating a decrease in the amplitude till it reach its
minimum. At this point the forcing starts being less negative, but still negative making the
system’s amplitude to decrease slower. Finally the forcing starts being positive and the
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process is repeated. In this case there’s not a transition between the phase of the system
and the forcing. This happens because the system is unbounded and there’s no reflection
that provokes a change in the initial phase.

Wave equation in unbounded domain at the point x=8 y=

i

5 40
For the ‘far’ point, the solution is similar in the fact that the forcing and the system aren’t in
phase. The main difference as expected is the presence of a time delay between the
apparition of the forcing and the reaction of the system at this point. Also as expected, the
forcing provokes smaller amplitude due to the dissipation caused by the long distance
travelled by the wave.

Amplitude

time

Figure 2-4 Green function, ‘far’ point

2.2 CPU time

The time used by a CPU to calculate the solution of the system with Green’s function is
compared with the solution obtained by separation of variables in the same domain Q in a
100x100 equispaced grid att = /2.

MATLAB is used for this procedure. The results are that the time needed to obtain a
snapshot of the solution for the damped and undamped wave equation using spectral
representation is quite similar (0.6780 and 0.7055 seconds respectively), which can be
considered fast. A different thing happens to elucidate a solution using the Green’s
function; to have a rough idea the time needed to obtain a solution at 1 point is around
0.2989, which tells us that for a grid of 10 thousand points the time is very superior
(around 50 minutes).
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2.3 Graphical representations

I Forcing term at t=m/2
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Figure 2-5 Forcing term at t = /2

Figure 2-5 represents the forcing term att = m/2. It is possible to see that the forcing is
concentrated around the origin. In fact, out of a circumference of radius 3 the forcing term
is zero. This is shown too in Figure 2-4, because the perturbation takes some time to
reach a point far from the origin. The Figure 2-6 is a zoom of the previous graph for
showing how the forcing term is in the bounded domain.

Forcing term at t=n/2
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Figure 2-6 Forcing term at t = /2 (zoom)
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Series expansion in terms of cos(mnx/2)
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Figure 2-7 Expansion (x)

Series expansion in terms of cos(hny/2)
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Figure 2-8 Expansion (y)

The expansion in x and y directions are both similar. It is possible to see the Gibbs
phenomena because the function £, (x) and f,,(y) do not verify the boundary conditions. In

spite of that, the sequences approximate very well the functions.
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Wave equation without damping at t=n/2

u(x,y,m/2)

Figure 2-9 System without damping

Wave equation with damping at t=n/2
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Figure 2-10 System with damping

The two graphs above represent the solution in a bounded domain without damping and
with damping respectively at t = /2. Both solutions are quite similar, but the damped
system presents lower amplitude.
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